- Askey Wilson
 - q-Racah
 - Continuous Dual q-Hahn
 - Continuous q-Hahn
 - Big q-Jacobi
 - q-Hahn
 - Dual q-Hahn
 - Al Salam Chihara
 - q-Meixner Pollaczek
 - Continuous q-Jacobi
 - Big q-Laguerre
 - Little q-Jacobi
 - q-Meixner
 - Quantum q-Krawtchouk
 - q-Krawtchouk
 - Affine q-Krawtchouk
 - Dual q-Krawtchouk
 - Continuous Big q-Hermite
 - Continuous q-Laguerre
 - Little q-Laguerre / Wall
 - q-Laguerre
 - Alternative q-Charlier
 - q-Charlier
 - Al-Salam-Carlitz I
 - Al-Salam-Carlitz II
 - Continuous q-Hermite
 - Stieltjes-Wigert
 - Discrete q-Hermite I
 - Discrete q-Hermite II
 
q-Racah Polynomials
Definition
The q-Racah polynomials are defined as
\[
  \begin{align}
    R_n(\lambda(x);b,c,d,N;q) &= \sum_{k=0}^\infty \frac{(q^{-n};q)_k (bq^{n-N};q)_k (q^{-x};q)_k (c d q^{x+1};q)_k}{(q^{-N};q)_k (bdq;q)_k (cq;q)_k (q;q)_k} q^k\\
                          &= {}_{4}\phi_{3}\!\left(\left. {q^{-n}, bq^{n-N}, q^{-x}, cdq^{x+1} \atop q^{-N}, bdq, cq} \; \right| q ; q \right)
  \end{align}
\]
